GRONING OCH PLANTETABLERING HOS VALLVÄXTER VID OLICA SÅDJUP OCH VID OLICA MARKFUKTIGHET

Erik Hallgren
GRÖNING OCH PLANTETABLERING HOS VALIVÄXTER VID OLIKA SÅDJUP OCH VID OLIKA MARKFUKTIGHET

Erik Hallgren

Uppsala 1974
INNEHÅLLSFÖRTECKNING

1. SYFTE
2. LITTERATUR
3. MATERIAL OCH METODER
4. RESULTAT
 4.1 Groning, skott- och rottillväxt
 4.2 Plantetablering vid olika sådjup och markfuktigheter
 4.3 Etablering av rödkläver i timotejvall vid olika bevattningsmängder
5. DISKUSSION
6. SUMMARY
7. LITTERATURFÖRTECKNING
1. SYFTE

Vid vallsådd är ofta ytlagret i jorden så torrt, att vallväxterna gror långsamt och ofullständigt. Det förekommer också, att ytlagret torkar ut så hastigt, att rötter från nyligen grodda från ej hinner växa ifatt en vikande fuktighetszon. Man ställer sig då frågan, om det är bättre att placera de småfröiga vallväxterna direkt på såbotten - vilket ofta innebär, att sådjuret blir relativt stort - än att placera dem grundare och i stället riskera, att vatten för groning och etablering inte räcker till. Under mycket fuktiga förhållanden kan jordens ytlager slamma igen och hämma gasutbytet mellan atmosfär och mark. Detta kan medföra, att sådd ovanpå markytan kan ge den bästa groningen och etableringen.

Denna undersökning har tillkommit för att utreda några av problemen vid sådd av vallväxter, och den kan indelas i tre delundersökningar.

Den första delundersökningen omfattade groning och tillväxt i mörker på filtrerpapper och var främst avsedd att ge en allmän bakgrund till de övriga delundersökningarna.

I den andra delundersökningen studerades uppkomst vid olika sådjure och markfuktigheter. Även effekter av uttorkning från markytan studerades.

Den tredje delundersökningen var främst avsedd som en praktisk tillämpning. Rödkläver såddes in i timotejvägg, dels på ytan, dels vid djupet 1 cm, och fick etablera sig vid två olika bevattningsmängder.
2. LITTERATUR

Vid likartade fuktighetsförhållanden och markförhållanden försenas vallväxternas uppkomst med ökat sådjup. Likaså avtar det slutliga antalet planter i procent av antalet sådda från, då sådjupet ökar under ett visst optimalt sådjup (Håkansson, 1968). I kärl med en mättligt nullhaltig, svagt lerig, sandig mo, som vattnades till mättnad varannan dag, befanns det optimala sådjupet för maximal uppkomst ligga omkring 0.5 cm för timotej, ängssvingel och rödkläver. Det gynnsammaste sådjupet för tidig utveckling av ovanjordiska skott var något större för timotej och ängssvingel och sammanföll alltså ej med optimalt sådjup för uppkomst (Håkansson, 1968).

I konkurrens med insåningsgröda missgynnas vallväxten alltmera, då dess sådjup ökar, detta förklaras med att vallväxten kommer senare upp och är mera förslygad ju större sådjupet är (Håkansson, 1970).

Tuveson (1971) undersökta uppkomsten av fem olika vallväxtarter från olika djup. Undersökningen utfördes i kärl med en mättligt nullhaltig, sandig majord, som vattnades så snart jordytan torkat. Resultaten från undersökningen visade i stort samma tendenser som resultaten i Håkanssons undersökning. Samtliga arter kom upp något snabbare vid sådjupet 0.5 cm än vid sådjupet 1 cm, men i några fall blev totala uppkomsten bättre, då frön placerades på djupet 1 cm. Undersökningen visade också, att uppkomsten från små frön var mindre än uppkomsten från stora frön hos timotej, ängssvingel, hundäxning och ängsgröse. Detta var ej fallet hos rödkläver. Arter med stora frön visade bättre uppkomst från större djup än arter med små frön. Rödkläver och timotej grodde snabbare än övriga arter.

Groning och uppkomst kan hämmas både vid för låg och vid för hög vattenhalt i marken (Tuveson, 1971). Vid låg vattenhalt är frönas vattenupptagning långsamt, vilket kan medföra försenad eller utbliven uppkomst. Hunter & Erickson (1952) fann, att frön, som ligger i en jord med låg vattenhalt, är utsatta för angrepp och bryts ned av svampar i jorden. Nämnda författare visade också,
att olika arter har olika krav på fuktighet för att kunna gro. Vid hög vattenhalt kan syretillgången bli för liten för att fröna skall gro och växa (Hughes m.fl. 1966), men även hög halt av koldioxid kan hämma fröns vattenupptagning och groning (Woods, 1965).

Eslick & Vogel (1959) såade från av ett flertal vallgräsarter och vallbeljväxtarter i en sandig lättlera vid fuktigheter mellan
pF = 2,5 och pF = 4,2. (Jordens vattenbindande förmåga kan uttryckas i en vattenpelare. Logarithmen för denna längd benämnes pF. Fältkapacitet pF=2,0 och visningsgräns pF=4,2. pF=3 motsvarar ett tryck av ungefär 1 atm.) Efter 14 dagar vattensättades jorden vid alla markfuktigheter till pF=2,5 och fröna fick stå ytterligare en vecka för groning. Att hålla fröna vid en markfuktighet över pF=2,5 visade sig reducera uppkomsten av bl.a. hundäxing och ängsgröse. Uppkomst för bl.a. timotoj, rödklöver och blåloxerna påverkades dock ej nämnvärt.

McGinnies (1960) visade, att ökat vattenbindande tryck mellan pF=2,5 och pF=4,2 i manitollösningar förserade groningen, minska gröningshastigheten och reducerade antalet grodor från hos sex olika gräsarter. Vid högst osmotiskt tryck i lösningen grodde fröna bättre vid +20°C än vid +10°C eller +30°C.

Hughes m.fl. (1966) undersökte två gräsarters etablering på en lerjord och fann, att markfuktigheten (pF=2,5, pF=3 och pF=3,5) var av större betydelse för vallväxternas uppkomst än de jordtätheter som valts (leran sammanpressad till volymvikterna 1,4, 1,5, 1,6 och 1,7).Uppkomsten var lägst vid pF=3,5. Syrodiffusionen uppnådde ej kritisk gräns vid pF=2,5. Parker & Taylor (1965) visade, att lätt packning vid en markfuktighet av pF=2,8 kan gynna uppkomsten, men att tung packning reducerar uppkomsten av plantror.
Tuveson (1971) fann, att uppkomsten av rödkläver försämrades mera med ökat sådjup vid hög vattenhalt (pH=1.2) än vid de låga vattenhalter som ingick i experimentet.

Trots att variationerna mellan olika fält och mellan olika år är stora, drar Dexter (1953) slutsatsen, att god etablering av vallväxter i regel gynnas av lätt myllning jämfört med sådd direkt på ytan utan myllning. Ofta är såväl marken som väderleken efter sådd alltför torr för att sådd på ytan skall lyckas.

Klöver sådd på eftersommaren och hösten kan ge låg klöverhalt i klövergräsvalLEN (Steen, 1970). Även sådd av klöver på sommaren kan ge lägre halt av klöver i en blandvall än efter sådd på våren, åtminstone på myrjord (Olofsson, 1948). Eftersom insådd av gräs på våren ofta misslyckas i de torra områdena i östra Sverige, kan det vara lämpligt, att så gräsen under juli eller augusti (efter träda eller efter tidigt mögnande gröda), då nederbördsmängderna är större. Insådd av klöver i förstaårsval av timotej borde ej vara mindre olämplig än insådd i höstsåd (jfr Sjöström, 1925). Agerberg (1958) meddelar dock, att hjälpådd i avsikt att förbättra främst klöverbeståndet i yngre eller äldre vallar har medfört ringa effekt.
3. MATERIAL OCH METODER

För den första delundersökningen utprovades en anordning enligt figur 1. Anordningen kallas här groningsplatta. Fröna sättades med ett inbördes avstånd av 1 cm under gasbindan, som tryckte fröna mot filtrerpapperet.

Då undersökningen startades, sattes groningsplattorna med frön ned i en ställning med fackindelade plastlådor och facken fylldes med avjoniserat vatten. Groningsplattorna placerades lutade med en vinkel av 20° mot vertikalplanet och med frösidan vänd mot detta. Lutningen av plattorna hindrade rötterna att växa in i papperet till följd av rötternas positiva geotropism.

I undersökningen ingick sex vallväxtarter med 100 frön av varje art. Då varje groningsplatta hade 25 frön förekom alltså fyra groningsplattor för varje art. Följande arter, sorter och 1000-kornvikt förekom:

<table>
<thead>
<tr>
<th>Art</th>
<th>Sort</th>
<th>1000-kornvikt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timotej (Phleum pratense L.)</td>
<td>Vanadis</td>
<td>0.57</td>
</tr>
<tr>
<td>Ängsvingel (Festuca pratensis Huds.)</td>
<td>Sv. sena</td>
<td>2.16</td>
</tr>
<tr>
<td>Hundkörning (Dactylis glomerata L.)</td>
<td>Frode</td>
<td>1.18</td>
</tr>
<tr>
<td>Engelskt rågås (Lolium perenne L.)</td>
<td>Vira</td>
<td>2.04</td>
</tr>
<tr>
<td>Rödklöver (Trifolium pratense L.)</td>
<td>Ulva</td>
<td>2.79</td>
</tr>
<tr>
<td>Blålusern (Medicago sativa L.)</td>
<td>Alfa II</td>
<td>2.20</td>
</tr>
</tbody>
</table>

Innan undersökningen startades, tvättades all glas- och plastmaterial med 96-procentig etylalkohol. Plattorna sköljdes därefter med avjoniserat vatten och fick torka.

Glasskivorna var 2 mm tjocka.
Gasbindan fastlimmades vid filtrerpapperet med vattenfast lim. Filtrerpapperet var placerat mellan glasskivorna, som hölls samman med kraftiga klämmor.

Främre glaskiva, 38 cm x 30 cm
Bakre glaskiva, 38 cm x 30 cm
Glesmaskig gasbinda, 1,5 cm x 38 cm
Frö
Säremsa
Limkant
Filtrerpappersvekar
Filtrerpapper 16 cm x 38 cm
Klämma
Figur 2. Sambandet mellan viktsprocent vatten och vattenbindande tryck, uttryckt som pF (s.k. avsugningskurva) för den använda jorden.
Den andra delundersökningen (uppkomst vid olika markfuktighet och olika sådjup) utfördes i mars (sådd 1), i april-maj (sådd 2) och i juli (sådd 3) 1970. I undersökningen förekom tre olika markfuktigheter. Vidare förekom placering av fröna på 10 olika sådjup: 0 cm (på ytan), 0.5 cm, 1 cm, 1,5 cm, 2 cm, 3 cm, 4 cm, 5 cm, 6 cm och 8 cm. Antalet kombinationer av markfuktigheter och sådjup var alltså 3 x 10 = 30 för varje art.

Arter, sorter och 1000-kornvikter för utsädet framgår av följande översikt:

<table>
<thead>
<tr>
<th>Art</th>
<th>Sort</th>
<th>1000-korn vikt, g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timotej (Phleum pratense L.)</td>
<td>Vanadis</td>
<td>0,57</td>
</tr>
<tr>
<td>Ångssvingel (Festuca pratensis Huds.)</td>
<td>Sv. sena</td>
<td>2,16</td>
</tr>
<tr>
<td>Rödklöver (Trifolium pratense L.)</td>
<td>Ulva</td>
<td>2,79</td>
</tr>
</tbody>
</table>

Den jord som användes var en mättligt mullhaltig, svagt lerig, sandig mo med följande egenskaper (medeltal för fem prov):

Porvolym, % 54,7 (52,1-57,0)
Specifik vikt 2,37
Volymvikt, torr, kg/dm³ 1,16 (1,11-1,23)
Vattenhalt vid vissningsgränsen, % av volyven 6,6

Porvolymen bestämdes efter lätt packning av jorden i 1-literskärl. Vattenhalt i volymprocent vid olika vattenavförande tryck i cm vattenspelare (logaritmen för längden benämns p) bestämdes på avvunngningsbåddar vid Avdelningen för Lantbruksets hydroteknik. Vattenhalten i volymprocent har omräknats till viktsprocent. Sambandet mellan vattenbindande tryck och viktsprocent vatten presenteras i figur 2.

Följande markfuktigheter ingick i undersökningen: led I, pF = 1,6 (0,04 atm); led II, pF = 2,6 (0,4 atm); led III, pF = 3,6 (4 atm).

Den jord som skulle användas fick ligga någon vecka och lufttorka och blandades sedan väl och övertäcktes med etylenplast. Före övertäckning uttogs 10 jordprov för bestämning av vattenhalt (torkning vid 105°C). Sedan vattenhalten hade beräknats, tillfördes så mycket
vatten, att de åsyftade pH-värdena ungefär uppnådes, varefter jorden ånyo blandades och övertäcktes. Den blandade jorden fick sedan stå orörda ett dygn för att en utjämning av vattenhaltten i jordpartiet skulle ske.

Vid första sädde blandades allt vatten in före sädde även till led I (pH≈1.6), men vid andra och vid tredje sädde tillfördes vattnet till led I dels före, dels efter sädde, för att jorden ej skulle ältas vid sädden.

Jorden fylldes i täta enlitters plastburkar med höjden 13.5 cm och packades lätt vid sädden. För varje markfuktighet och för varje sådjup såddes två kärl med 25 frön i varje kärl (2 samparceller). Omedelbart efter sädde ställdes burkarna in i genomskinliga malpåsar av etylenplast placerade på vagnar. Plastväven hölls uppe av stålträderamar med rektangulära sidor.

Ett plasttält förekom för varje markfuktighet. I varje plasttält inställdes 20 sådda burkar (2 samparceller) plus flera osådda burkar med enbart jord för bestämning av eventuella vattenhaltsförändringar. Plasttälen tillslöts och ställdes in i ett konstantrum med temperaturen 20°C och med en ljusperiod av 12 timmar per dygn. Ljusenergin under ljusperioden var ungefär 0.04 cal per cm² och minut inne i plasttälen. Avräkning av uppkomna plantor skedde i regel varje dag intill 20 dagar efter sädde. Vattenhaltten i jorden bestämdes vid flera tidpunkter.

Efter första sädde öppnades plasttälten blott under några sekunder varje dag för gasutbyte. Efter andra sädde öppnades plasttälten 5 minuter varje dag och efter tredje sädde användes fläktar (Philips type Hz 5170, 15W) för luftcirkulation i tälten under de första dagarna efter sädde.

Den tredje delundersökningen utfördes i två bredvid varandra liggande kvadratiska block med sidorna 6 m x 6 m. Försöksuppläggningen
Figur 3. Plan för undersökning av rödkläver insädd i etablerad timotejvall.

<table>
<thead>
<tr>
<th></th>
<th>0 cm</th>
<th>1 cm</th>
<th>e.r.</th>
<th>0 cm</th>
<th>1 cm</th>
<th>e.r.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hög vattengiva</td>
<td>e.r.</td>
<td>0 cm</td>
<td>1 cm</td>
<td>e.r.</td>
<td>0 cm</td>
<td>1 cm</td>
</tr>
<tr>
<td>Låg vattengiva</td>
<td>1 cm</td>
<td>e.r.</td>
<td>0 cm</td>
<td>1 cm</td>
<td>e.r.</td>
<td>0 cm</td>
</tr>
</tbody>
</table>

0 cm = sådd av rödkläver på markytan
1 cm = sådd av rödkläver 1 cm djupt
e.r. = ej sådd av rödkläver

framgår av figur 3. Det ena blocket vattnades rikligt, medan det andra erhöll sparsamt med vatten. Rödkläver såddes mellan etablerade timotejrader, dels ovanpå marken (0 cm), dels 1 cm djupt. Undersökningen var förlagd till ett skifte med måttligt mullhaltig, sandig mo i matjorden och med mo i alven.

Timotej (Vanadis) hade radsätts (12.5 cm radavstånd) med 2.0 g per m² den 18 augusti 1971. Den 27 april 1972 gödslades fältet med NPK-gödsel och kalksalpeter, varvid följande mängder tillfördes: 6.0 g N, 1.8 g P och 5.4 g K per m². Då förekomsten av baldersbrå och kamomill var hög i timotejbeståndet, företogs sprutning med dinoseb den 4 maj.

Rödkläver (Ulva) såddes med enradig såmaskin (Planet Junior 300 A) mellan timotejraderna den 6 maj 1972. Timotejen var då 5 - 10 cm hög. Antalet sådda från per sträckmeter var i medeltal 112 (motsvarande ungefär 2.27 g per m²). Bakteriekultur uppblandad i vatten strilades ut över klöverparcellerna omedelbart före bevattning den 8 maj. Vatten tillfördes med hjälp av en trädgårdsspridare (märke Melnor) vid följande tider och med följande givor:

<table>
<thead>
<tr>
<th>datum</th>
<th>svag vattning mm</th>
<th>stark vattning mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>-</td>
<td>45</td>
</tr>
<tr>
<td>14.6</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>24.7</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Spridaren flyttades i olika positioner under spridningen, för att vattentillförseln till den bevattnade ytan skulle bli så jämna som möjligt.

Nederbörd och temperatur under vegetationsperioden 1972 framgår av figur 4.

Skörd företogs dels den 14 juni, dels den 5 september 1972. Vid båda tillfällena skördades en cirkelrund yta om 1 m² i mitten av varje parcell. Vid klippning användes en grässax med 5 cm hög mede. De uttagna provena förvarades i slutna plastpåsar i konstantrum (+2 °C). Botanisk analys skedde inom en vecka efter skörd.
4. RESULTAT

4.1 Groning, skott- och rottillväxt

Groningen i mörkrum vid 15°C gick hastigare hos vallbaljväxterna än hos gräsen (figur 5 och 6). Femtioprocentig groning uppnåddes efter ungefär följande antal timmar:

- rödkläver: 55
- blålusern: 31
- timotej: 106
- ängssvingel: 132
- engelskt rajgräs: 93
- hundäxing: 160

När väl groningens kommit igång gick den mycket snabbt hos timotej (figur 5) men även hos blålusern och rödkläver. Hos ängssvingel men särskilt hos hundäxing gick groningens långsamt, även sedan den startat. Hos hundäxing dröjde det nästan 12 dygn innan 80 procent av fröna hade grott (figur 6), men hos blålusern knappt 2 dygn.

Långdtilväxten av rötter (rötter + hypokotyl hos baljväxterna) gick snabbast hos blålusern (figur 6). Rottillväxten per dag var ungefär lika stor för rödkläver, engelskt rajgräs och ängssvingel, men mindre än hos blålusern (figur 5 och 6). Hos hundäxing och timotej var tillväxten av rotlängden hos de grodda fröna lägre än hos övriga arter (figur 5 och 6). Undersökningen avbröts, då rottillväxten hade börjat avstanna, hos gräsen 12 dygn och 16 timmar efter sådd, hos rödkläver 10 dygn efter sådd och hos blålusern 9 dygn efter sådd. Rotmedellängder, standardavvikelse och variationskoefficienter var då följande:

<table>
<thead>
<tr>
<th>Rotmedellängd, (rot + hypokotyl hos baljväxterna) cm</th>
<th>Standardavvikelse, cm</th>
<th>Variationskoefficient, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blålusern</td>
<td>75.7</td>
<td>18.3</td>
</tr>
<tr>
<td>Rödkläver</td>
<td>55.9</td>
<td>28.1</td>
</tr>
<tr>
<td>Timotej</td>
<td>36.9</td>
<td>9.2</td>
</tr>
<tr>
<td>Ängssvingel</td>
<td>48.9</td>
<td>17.0</td>
</tr>
<tr>
<td>Engelskt rajgräs</td>
<td>62.8</td>
<td>22.1</td>
</tr>
<tr>
<td>Hundäxing</td>
<td>44.2</td>
<td>15.0</td>
</tr>
</tbody>
</table>
Figur 5. Groning och rottriväxt (för rödkläver, rot + hypokotyl) i mörker vid en konstant temperatur av 15 °C. Rotlängd mätt för samtliga grodda frön.
Figur 6. Groning och rottillväxt (för blålusern, rot + hypokotyl) i mörker vid en konstant temperatur av 15 °C. Rotlängd mätt för samtliga grodda frön.
Figur 7. Skottillväxt hos några gräs i mörker vid en konstant temperatur av 15 °C. Skottlängd mätt för samtliga grodda frön.

E = Engelskt rajgräs
Ä = Ängssvingel
T = Timotej
H = Hundäxing
Sammanställningen visar, att variationen i rotlängd var störst för rödkläver och minst för blålusern och timotej.

Figur 7 visar, att skotten tillväxte snabbare hos engelskt rajgräs och ängsvingel än hos timotej och hundäxing. Skotten hos timotej var under den tid som mätningar skedde längre än hos hundäxing. Engelskt rajgräs hade hela tiden längre skott än övriga gräsarter (figur 7).

4.2 Plantetablering vid olika sådjup och markfuktigheter

Sambandet mellan etableringshastighet och sådjup redovisas i figur 8, 9 och 10. För gräset har femtioprocentig och tjugofem-procentig etablering valts, eftersom grobarheten för gräset var relativt hög. För rödkläver, som hade lägre grobarhet, valdes fyrtioprocentig och tjugoprocentig etablering. Antalet etablerade plantor anges i procent av antalet sådda frön.

I ledet med högsta markfuktigheten forekom groddplantor i första sådd nästan enbart efter sådd på markytan. Fyrtioprocentig uppkomst av rödkläver noterades endast vid pF≈2.6 för sådjupen 0, 0.5 och 1 cm. Timotej och ängsvingel kom upp snabbare vid pF≈2.6 än vid pF≈3.6 (figur 8). Vid pF≈2.6 etablerade sig timotej och ängsvingel snabbast vid grund placering (0-1.5 cm) men vid pF≈3.6 gick etableringen bäst och snabbast vid 1.5-2 cm hos timotej och vid 1-3 cm hos ängsvingel (figur 8).

Figur 9 och 10 visar etablering efter andra sådd (21 april 1970). De olika arterna etablerade sig snabbare vid pF≈2.6 än vid pF≈1.6. Vid sådjupen 4 cm och 5 cm etablerade sig ängsvingel något snabbare vid pF≈3.6 än vid pF≈1.6. Vid pF≈1.6 etablerade sig arterna snabbast efter sådd på ytan och vid pF≈2.6 efter sådd på djupet 0.5 cm. I led III (pF≈3.6) etablerade sig ängsvingel snabbast från djupen 4 och 5 cm.

Figur 11, 12 och 13 visar antalet uppkomna plantor vid olika markfuktigheter och sådjup 20 dagar efter sådd. Vid högsta markfuktigheten (pF≈1.6) var etableringen i regel bäst vid sådd på ytan för såväl gräset som rödklävern. Vid första sådd förekom plantor nästan

Timotej

Ängssvingel

○ led II (pF ≈ 2,6)
△ led III (pF ≈ 3,6)

Timotej

Ångssvingel

Rödkläver

* led I (pF = 1,6)
○ led II (pF = 2,6)
△ led III (pF = 3,6)

--- gräs
----- rödkläver
Figur 11. Inverkan av vattenbindande tryck och sådjup på antalet uppkomna plantor 20 dagar efter sådd.

Timotej

Antalet uppkomna plantor i procent av antalet sådda frön.

Sådd 1 (4.3 1970)

Sådd 2 (20.4 1970)

Sådd 3 (2.7 1970)

- * led I (pF = 1,6)
- o led II (pF = 2,6)
- △ led III (pF = 3,6)
Figur 12. Inverkan av vattenbindande tryck och sådjup på antalet uppkomna plantor 20 dagar efter sådd.

Ängssvingel
Antalet uppkomna plantor i procent av antalet sådda frön.

Sådd 1 (4.3 1970)
Sådd 2 (20.4 1970)
Sådd 3 (2.7 1970)

* led I (pF≈ 1,6)
○ led II (pF ≈ 2,6)
△ led III (pF ≈ 3,6)
Figur 13. Inverkan av vattenbindande tryck och sådjup på antalet uppkomna plantor 20 dagar efter sådd.

Rödklöver
Antalet uppkomna plantor i procent av antalet sådda frön.

Sådd 1 (4.3 1970)

Sådd 2 (20.4 1970)

Sådd 3 (2.7 1970)

* led I (pF ≈ 1,6)
○ led II (pF ≈ 2,6)
△ led III (pF = 3,6)
onbart efter sådd på markytan. Efter andra och tredje sådd och vid högsta markfuktigheten etablerade sig gräsen betydligt sämre vid djupet 0,5 cm än vid något större sådjup och vid sådd på ytan. Denna tydliga tendens för sådjupet 0,5 cm förekom ej hos rödkläver.

I led II (pF ≈ 2,6) var uppkonsten bäst vid ett sådjup av 0,5 cm hos såväl gräsen som hos rödklävern. God uppkonst erhölls vid sådjup ned till 1,5 cm hos tinotej och rödkläver och ned till 3–4 cm hos ångssvingel (figur 11, 12 och 13). Fuktigheten på markytan räckte i några fall till för groning och etablering. I de fall, där markytan hastigt torkade ned hjälp av fläkt, räckte dock ej fuktigheten till.

I torraste ledet (pF ≈ 3,6) var uppkonsten bäst från nedelstora sådjup. Tinotej kon upp bäst från sådjunpen 1,5–4 cm, ångssvingel från 3–5 cm och rödkläver från 3–4 cm. Vid hastig uttorkning av ytskiktet försköts det optimala sådjupet mot något större djup, vilket var särskilt tydligt för ångssvingel (figur 12).

Uppkonst från större sådjup (6–8 cm) förekom i nämnvärd omfattning endast hos ångssvingel vid låg markfuktighet (pF ≈ 3,6). Tinotej och rödkläver visade liten uppkonst i det torraste ledet, då uttorkning ned fläkt förekom.

De uppkomna plantorna hos gräsen etablerade sig alla, men hos rödklävern dog en del. Nodanstående sammanställning anger antalet döda eller döende rödkläverplanter i procent av antalet uppkomma plantor 20 dagar efter tredje sådd:

<table>
<thead>
<tr>
<th>Led</th>
<th>Sådjup, cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>I (pF ≈ 1,6)</td>
<td>0</td>
</tr>
<tr>
<td>II (pF ≈ 2,6)</td>
<td>0</td>
</tr>
</tbody>
</table>

Av sammanställningen framgår, att dödigheten var större bland de planter som kommit upp från större djup. Vid lägsta markfuktighet (pF ≈ 3,6) förekom inga döda planter.
Merkfuktigheten kontrollerades flera gångar efter varje såtid. Vattenhalter motsvarande följande pH-värden noterades efter första sådd, 4 mars 1970 (medeltal för 2 kärl):

<table>
<thead>
<tr>
<th>Datum</th>
<th>Led</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td></td>
<td>1.53</td>
<td>2.64</td>
<td>3.60</td>
</tr>
<tr>
<td>13.3</td>
<td></td>
<td>1.58</td>
<td>2.68</td>
<td>3.68</td>
</tr>
<tr>
<td>24.3</td>
<td></td>
<td>1.62</td>
<td>2.76</td>
<td>3.76</td>
</tr>
</tbody>
</table>

Det vattenbindande trycket ökade alltså med tiden, d.v.s. vatten bortgick från kärlen. Vid provtagning i ytterligare kärl den 24 mars kunde för enskilda kärl vattenhalter motsvarande pH-värd- den så låga som 1.47 noteras i led I och så höga som 3.83 i led III.

Vattenhalter motsvarande följande pH-värden noterades efter andra sådd, 20 april 1970 (medeltal för 2 kärl):

<table>
<thead>
<tr>
<th>Datum</th>
<th>Led</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.4</td>
<td></td>
<td>1.60</td>
<td>2.60</td>
<td>3.70</td>
</tr>
<tr>
<td>27.4</td>
<td></td>
<td>1.62</td>
<td>2.72</td>
<td>3.80</td>
</tr>
<tr>
<td>10.5</td>
<td></td>
<td>1.68</td>
<td>2.78</td>
<td>3.86</td>
</tr>
</tbody>
</table>

Vattenhalterna var alltså lägre i led I och led III efter andra sådd än efter första sådd.

Efter tredje sådd skedde provtagning i 6 kärl för att även ett mått på spridningen skulle erhållas. Följande pH-värden beräknades för tredje sådd, 2 juli 1970:

<table>
<thead>
<tr>
<th>Datum</th>
<th>Led</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7 (13.00)</td>
<td></td>
<td>1.60</td>
<td>2.60</td>
<td>3.60</td>
</tr>
<tr>
<td>2.7 (17.00)</td>
<td></td>
<td>1.60</td>
<td>2.68</td>
<td>3.70</td>
</tr>
<tr>
<td>4.7</td>
<td></td>
<td>1.62</td>
<td>2.72</td>
<td>3.80</td>
</tr>
<tr>
<td>11.7</td>
<td></td>
<td>1.68</td>
<td>2.78</td>
<td>3.83</td>
</tr>
<tr>
<td>16.7</td>
<td></td>
<td>1.70</td>
<td>2.81</td>
<td>3.87</td>
</tr>
<tr>
<td>22.7</td>
<td></td>
<td>1.76</td>
<td>2.85</td>
<td>3.88</td>
</tr>
</tbody>
</table>
Av uppställningen framgår, att vattenhaltarna minskade kraftigt redan första dagen på grund av fläktens uttorkande effekt. Variationsviderna för markfuktigheten (viktsprocent) framgår av följande sammanställning:

<table>
<thead>
<tr>
<th>Datum</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>0.00</td>
<td>0.37</td>
<td>0.24</td>
</tr>
<tr>
<td>4.7</td>
<td>0.04</td>
<td>0.13</td>
<td>0.07</td>
</tr>
<tr>
<td>11.7</td>
<td>0.01</td>
<td>0.58</td>
<td>0.22</td>
</tr>
<tr>
<td>16.7</td>
<td>0.05</td>
<td>0.19</td>
<td>0.23</td>
</tr>
<tr>
<td>22.7</td>
<td>0.01</td>
<td>0.11</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Sammanställningen visar, att variationen i vattenhalt var liten i fuktigaste ledet men ganska stor i de torrare leden.

Genom vattenhaltsbestämning i jordprov från ytskiktet (0-2 cm), från mellanskiktet (3-6 cm) och från botten skiktet (7-9 cm) i burkarna testades, huruvida skiktning av vattnet förekom. Bestämningarna utfördes den 10 maj 1970, tjugo dagar efter andra sådd. Följande pH-värden kunde därefter beräknas (medeltal för två kärl):

<table>
<thead>
<tr>
<th>Skikt</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2 cm</td>
<td>1.54</td>
<td>2.92</td>
<td>4.35</td>
</tr>
<tr>
<td>3-6 cm</td>
<td>1.70</td>
<td>2.84</td>
<td>3.82</td>
</tr>
<tr>
<td>7-9 cm</td>
<td>1.72</td>
<td>2.79</td>
<td>3.28</td>
</tr>
</tbody>
</table>

Av sammanställningen framgår, att vattnet var tydligt skiktat i burkarna. Särskilt tydlig var skiktningen i ledet med lägsta markfuktigheten (pH≈3.6).

<table>
<thead>
<tr>
<th>Skikt</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2 cm</td>
<td>1.66</td>
<td>3.20</td>
<td>4.44</td>
</tr>
<tr>
<td>7-9 cm</td>
<td>1.92</td>
<td>2.90</td>
<td>3.54</td>
</tr>
</tbody>
</table>

Även efter tredje sådd hade alltså vattnet skiktat sig i jorden.
Av de två sista sammanställningarna framgår, att vid hög markfuktighet (pF≈1.6) var ytskikten vätare än bottenskikten. I ledet med lägre markfuktighet var däremot ytskikten torrare än bottenskikten.

4.3 Etablering av rödkläver i timotejvall vid olika sådjup och vid olika bevattningsmängder

Rödkläverplantorna ökade mellan timotejvägarna den 24 maj och hade fägt treväpplingar den 6 juni. Vid skörd den 14 juni var totalsvävastningen 328.8 g torrsubstans per m² efter stark bevattning och 328.4 g torrsubstans per m² efter svag bevattning. Skörden bestod enbart av timotej och ogräs, eftersom rödkläver befann sig under slätterhöjd. Timotejhalten var högre efter stark bevattning, 66.5 procent mot 43.3 procent vid svag bevattning. Ogrässet bestod nästan endast av kamomill.

<table>
<thead>
<tr>
<th>Behandling</th>
<th>Torrvikt av vallväxter + ogräs g/m²</th>
<th>Viktsprocent av Timo- Röd- Ogräs Variations- Antal klö-</th>
<th>Hög vattendriva</th>
<th>Låg vattendriva</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rödkläver tej</td>
<td>klöver</td>
<td>Variationsvidd</td>
</tr>
<tr>
<td>Ej sådd av rödkläver</td>
<td>110.6</td>
<td>79.6</td>
<td>0</td>
<td>20.4</td>
</tr>
<tr>
<td>Sådd av rödkläver på ytan</td>
<td>124.6</td>
<td>53.0</td>
<td>28.2</td>
<td>18.8</td>
</tr>
<tr>
<td>Sådd av rödkläver 1 cm djupt</td>
<td>158.1</td>
<td>50.6</td>
<td>36.9</td>
<td>12.5</td>
</tr>
</tbody>
</table>
Vid skörd den 5 september 1972 avkastade led med rödkläver och timotej mera än led med enbart timotej (tabell 1). Totalavkastningen och klöverhalten var högst i de led där rödklävern sätts 1 cm djupt (tabell 1). Även antalet klöverplanter per m² var högre efter myllning (tabell 1). Stark bevattning ökade totalskörden främst genom att gynna rödklävern. Kombinationen stark bevattning och myllning av rödkläverfröet var särskilt gynnsam för rödklävern. Variationsvidden i klöverhalt mellan de olika samparcellerna var emellertid stor (tabell 1).

Ogräset utgjordes huvudsakligen av kamomill och baldersbrå och visade inga större variationer i vikt mellan olika led. Viktsprocenten ogräs var däremot lägst i de led där rödklävern hade etablerat sig bäst.
5. DISKUSSION OCH SLUTSATSER

Enligt många erfarenheter gror hundäxing långsamt. Detta bekräftas också i dessa försök. Stöpning av hundäxingfrön i vatten har dock visat sig kunna påskynda groningens avsevärt (jfr Chippendale, 1934). Den i förhållande till rödkläver snabba rot- och hypokotyl-
tillväxten efter groning hos blåbusern kan vara av värde i konkurr-
rensen med ogräs i förstaårsvallen (jfr Hallgren, 1974).

Skottillväxt i mörker kan ge ett uttryck för olika arters förmåga att ta sig upp från olika djup. Den snabba skottillväxten hos ängssvingel i mörker (figur 7) stämmer väl överens med artens goda förmåga att ta sig upp även från stort sådjup (figur 12).

Vid första sådd, delundersökningen om inverkan av sådjup och mark-
fuktighet, gavs allt vatten till ledet med hög markfuktighet (pF=1.6) före sådd. Troligtvis förstördes porsystemet mer eller mindre, då den våta jorden fylldes i plastkärlen och packades, och detta medförde, att gasutbytet och därmed groningen hämmades. Risk för ältning finns alltså i leriga jordar vid höga vattenhal-
ter.

Igenslämning av det översta markskiktet kan vara orsak till att ti-
motej och ängssvingel kom upp sämre från sådjupet 0.5 cm än från 1 cm i ledet med hög markfuktighet.

Vid hög markfuktighet är grund sådd av vallfröet att föredra. Sådana förhållanden gäller särskilt vid sådd på hösten.

De vattenhaltsgradienter som förekommer i fält vid torrt väder är i regel betydligt kraftigare än de som förekom i dessa experiment (jfr Heinonen, 1971). Placeras fröna ytligt i det torra bearbetade ytlagret kanske bara ett fåtal frön gror, fröroten hinner ej träna ner i de fuktigare jordlagren och groddplantan torkar och dör. Att vänta på regn kan också vara vanskligt; ofta uteslir regnet eller kommer i så ringa mängd, att endast groning men ej efterföljande

Hård packning ger fröet större kontakt med underliggande fuktiga lager, minska sådjuret och kan därför i allmänhet rekommenderas i torra områden.

Germination and establishment of seeds of ley species at different soil depths and at different water supplies

This investigation can be subdivided into three parts. Part I comprised germination and growth of roots and shoots on filterpaper and was intended to form a basis for the interpretation of the results of the other two parts.

In the second part, a study was made of plant establishment at different sowing depths and at different water-binding capacities of the soil. The effect of the drying-out of the soil surface was also studied.

The third part consisted of the practical application. Seeds of red clover were sown in established stands of timothy, partly on the soil surface, and partly shallowly covered. There were two water regimes, heavy irrigation and light irrigation.

Germination and early growth of roots and shoots

Germination and early growth of roots and shoots were measured in timothy, meadow fescue, cocksfoot, perennial ryegrass, red clover and alfalfa. The seeds were germinated on filter papers within glass-plates (Figure 1). The roots were not able to grow into the filter papers as the glass-plates were inclined 20° towards the vertical plane (positive geotropism). The glass-plates were placed in boxes divided into compartments. Each compartment was filled with deionized water. The boxes were placed in a dark room with a constant temperature of 15°C.

The seeds of alfalfa and red clover germinated more rapidly than the seeds of the grasses. (Figures 5 and 6). Hardly 2 days were needed for 80 percent of alfalfa seeds to germinate but nearly 12 days for the same amount of cocksfoot seeds. The roots (+ hypocotyl) of alfalfa grew faster than the roots of the other species.
The roots of timothy and cocksfoot grew slowly (Figures 5 and 6). The shoots of perennial ryegrass and meadow fescue grew more rapidly than the shoots of timothy and cocksfoot.

Plant establishment at different sowing depths and at different water-binding capacities of the soil

The following sowing depths were used: on the surface, 0.5 cm, 1 cm, 1.5 cm, 2 cm, 3 cm, 4 cm, 5 cm, 6 cm and 8 cm. The soil was a humus-rich sandy loam with the following characteristics (medium of 5 tests):

- Pore space, %: 54.7 (52.1-57.0 %)
- Specific weight: 2.57
- Weight per volume, dry, kg/dm³: 1.16
- Moisture content at wilting-point, percent by volume: 6.6

The water-binding capacity was measured on special pressure-beds. Figure 2 gives the pressure expressed in pF (the logarithm of the pressure expressed in column of water, cm) at different moisture contents, percent of dry weight.

The species were as follows: Timothy (Vanadia), meadow fescue (S. sana) and red clover (Ulua). There were also three water-binding capacities of the soil: (1) pF = 1.6, (2) pF = 2.6 and (3) pF = 3.6.

The soil was filled into plastic pots, where the seeds were sown at different depths. After sowing the pots were placed in transparent tents of plastic. The tents were closed and were placed in a cabinet with a constant temperature of 20°C.

The results of this experiment suggest that at a low moisture content (pF = 3.6) of the soil timothy and red clover should be placed at a depth of 2-4 cm and meadow fescue at a depth of 3-5 cm. These sowing depths may be particularly suitable if the soil dries quickly.
from the top. Increasing the water-binding capacity from pF \approx 3.6 to pF \approx 3.8 may strongly reduce the establishment, at least of red clover and timothy. Where the soil is wet (pF \approx 1.6) it is best to place the seeds on the surface or at a very shallow depth. The establishment of the plants was best at a medium moisture content (pF \approx 2.6) in the soil and at a sowing depth of 0.5-1.5 cm.

Red clover sown in stands of timothy

The soil was a humus-rich sandy loam. Fertilizers were given in the spring 1972 with the following amounts per m²: 6.0 g N, 1.8 g P and 5.4 g K. Timothy was sown on August 18, 1971 (2.0 g per m²). Red clover was sown in rows between the rows of timothy on May 6, 1972. Harvests were taken on June 14 and September 5, 1972. The red clover appeared only in the last harvest.

There was much more clover in plots watered generously (135 mm water + precipitation, Figure 4) than in plots with slight irrigation (60 mm water + precipitation). There was also much more clover in plots where the seeds of clover had been shallowly covered with soil (1 cm) than in plots where the seeds had been placed on the soil surface.
7. LITTERATURFÖRTECKNING

Håkansson, S. 1970. Modellexperiment gällande växtodlingsfrågor
Uppsala.

McGinnies, W.J. 1960. Effects of moisture stress and temperature
on germination of six range grasses. Agron. J. 52, 159-162.

Olofsson, S. 1943. Olika insäningsmetoder och skördetider för
slättervallar inom myrområden på Gotland. Svenska Vall-

Parker, J.J.Jr. & Taylor, H.M. 1965. Soil strength and seedling
emergence relations. 1. Soil type, moisture tension, tem-

Steen, L. 1970. Anläggning av vall i ettåriga rajgräs. Lantbr
högsk. meddn A 130, 20 sidor.

Tuvesson, N. 1971. Demonstrations- och övningsexperiment i sluten

Woods, L.E. 1965. The germination and emergence of Birdsfoot
Trefoil (Lotus corniculatus L.) in relation to its physical
environment. Dissertation Abstracts, 10, 5636-5637.
<table>
<thead>
<tr>
<th>Nr</th>
<th>År</th>
<th>Författare och titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1973</td>
<td>Ohlsson, I.: Skördetid och skördmetod - inverkan på våroljeväxternas avkastning och frökvalitet (Diss.) Summary: Influence of the time and method of harvesting on the seed yield and seed quality of some spring-sown oleiferous crops. 12 kr.</td>
</tr>
<tr>
<td>9</td>
<td>1974</td>
<td>Hallgren, E.: Utveckling och konkurrens i vallbestånd med ogräs (Diss.) Summary: Development of stands of ley plants and weeds at different spacing, distribution and relative time of emergence of the ley plants. 12 kr.</td>
</tr>
<tr>
<td>11</td>
<td>1974</td>
<td>Lagerström-Bäckström, G.: Vetets och kornets mognadsförlopp med speciell hänsyn till kvalitativa förändringar i kärnan (Diss.) Summary: Qualitative changes in the kernel during the ripening process. Studies in spring wheat and barley. 15 kr.</td>
</tr>
<tr>
<td>17</td>
<td>1974</td>
<td>Hallgren, E.: Temperaturens inverkan på utveckling i bestånd med rödkläver, timotej och ogräs. 5 kr.</td>
</tr>
</tbody>
</table>

Pris på detta nummer 5 kr.