Botanisk sammansättning i blandbestånd av baljväxter och gräs

Litteraturöversikt särskilt avseende olika odlingstekniska åtgärders effekter i blandbestånd med rödklöver, vitklöver eller lusern

BODIL E. FRANKOW—LINDBERG

Summary: Botanical composition in mixed swards of legumes and grasses

Review of literature as regards effects of different cultural practices in mixed swards of red clover, white clover or lucerne

Växtodling • 17

Uppsala 1990
Botanisk sammansättning i blandbestånd av baljväxter och gräs

Växtodling • 17
ISSN 1100–1151
Uppsala 1990
35 sidor 35 pages

Tryck SLU/Repro, Uppsala 1990

Referat: I denna litteraturöversikt beskrivs hur utsädesmängd, art- och sortval, gödslings, bevattning och avhuggning påverkar den botaniska sammansättningen i blandbestånd av baljväxter (rödkläver, vitkläver eller lusern) och gräs. Avslutningsvis ges kortfattade odlingsanvisningar för resp. baljväxt-gräsbestånd.

Ämnesord: Trifolium pratense, Trifolium repens, Medicago sativa, utsädesmängd, gödslings, bevattnning, avhuggning, blandbestånd

Abstract: This review deals with the effects of seed rates, choice of species and cultivar, fertilization, irrigation and defoliation on botanical composition in mixed swards of legumes (red clover, white clover or lucerne) and grasses. Brief guidelines on recommended cultural practices are given for each legume-grass mixture.

Key words: Trifolium pratense, Trifolium repens, Medicago sativa, seed rates, fertilization, irrigation, defoliation, mixed swards
Botanisk sammansättning i blandbestånd av baljväxter och gräs

Litteraturöversikt särskilt avseende olika odlingstekniska åtgärders effekter i blandbestånd med rödkläver, vitkläver eller lusern

BODIL E. FRANKOW—LINDBERG

Summary: Botanical composition in mixed swards of legumes and grasses

Review of literature as regards effects of different cultural practices in mixed swards of red clover, white clover or lucerne
INNEHÅLLSFÖRTECKNING

INLEDNING 3
ARTBESKRIVNING 3
UTSÄDESMÄNGD 5
GRÄSART ELLER GRÄSARTER 5
SORTVAL 7
GÖDSLING 7
BEVATTNING 11
AVHUGGNING 13
FÖRÄNDRINGAR MED TIDEN 16
SAMMANFATTNING 18
SUMMARY 21
REFERENSER 24
INLEDNING

ARTBESKRIVNING

Rödklöver

inlagring av reservnäring vilket gör dem mer vinterhär-
diga, medan det omvända råder hos tidiga sorter. Rödkläver
kan inte regenereras vegetativt. Rödklävers tusenkornvikt
varierar mellan 1,5 och 3,0 g.

Vitkläver

Groddplantan hos vitkläver har en kort pärlrot, men denna
dör snart bort och ersätts med sidorötter som utvecklas
från den liggande stjälkens noder. Groddplantan utvecklar
en rosett och bladrika stoloner (liggande stjälkar) ut-
vecklas ur de tillväxtknoppar som finns vid basen av bla-
den i rosetten. Stolontillväxten påverkas starkt av miljön
och är som starkast under långdagsförhållanden.

Hos vitkläver sker en ständig nyproduktion av tillväxt-
punkter vid basen av varje nytt blad. Från en sådan sill-
växtknop kan antingen en ny stolon eller en blomma ut-
vecklas. Blombildningen stimuleras av god ljusstigning.
När en blomma utvecklats kan ingen ytterligare nyttillväxt
ske från denna punkt, men blombildning sker aldrig från
samtliga tillväxtpunkter langs med stolonerna. Vitkläver
kan således alltid regenereras vegetativt. Under perioder
när plantan inte blommar är alla tillväxtknoppar skyddade
vid avhuggning. Tusenkornvikten hos vitkläver varierar
mellan 0,6 och 0,8 g.

Lusern

Lusern utvecklar en grov och mycket djupgående pärlrot.
Liksom hos rödkläver finns tillväxtknoppar vid basen av
plantan, och dessa lyfts upp i toppen av varje nyprodu-
cerat skott. Under anläggningsåret utvecklas ingen blad-
rosett som hos ovan beskrivna klöverarter. Däremot sker
stjälktillväxt redan hos den mycket unga plantan, vilket
gör lusern, till skillnad från t.ex. rödkläver, känslig
för avhuggning under anläggningsåret. Avhuggning i detta
stadium avlägsnar alltså de aktiva tillväxtpunkterna och
all nyttillväxt beror av att nya tillväxtknoppar aktiveras,
men denna nyproduktion av tillväxtpunkter är ännu svag.
Följande års tillväxt sker på samma sätt, dvs. långa
stjälkar med tillväxtpunkten i spetsen växer ut från plantan
rothals. I etablerat skick är nyproduktionen av till-
växtpunkter god och lusern genererar då åtminstone tre
skottgenerationer per år i vårt klimat. Plantan är dock
känslig för återkommande avhuggning utöver detta antal
då de aktiva tillväxtpunkterna alltid kommer att avlägsnas
vid skörd. Blomning sker under långdagsförhållanden. Top-
skottet slutar då att utvecklas och blommor växer fram
vid basen av bladen längs med stjälken. Tusenkornvikten
hos lusern varierar mellan 1,8 och 2,3 g.
UTSÄDESMÄNGD

Att reglera den botaniska sammansättningen i ett blandbestånd genom att variera proportionerna i utsädet förefaller att vara ett enkelt och lätt hanterligt sätt. Detta har också studerats i en lång rad undersökningar.

GRÄSART ELLER GRÄSARTER

I Canada har man gjort en intressant undersökning av omvänt slag (Turkington m.fl., 1979). Man studerade där den spontana associationen mellan olika baljväxter och gräs i äldre permanenta vallar och fann att t.ex. rödkläverförekomsten var positivt korrelerad med förekomsten av timotej och Festuca-arten. Förekomsten av lusern, däremot, var positivt korrelerad med förekomst av hundäxing och Festuca-arten.

SORTVAL

GÖDSLING

Gödslingens betydelse för den botaniska sammansättningen i både permanenta och växtföljdsvallar har ofta studerats.
Tabell 1. Effekten av kvävegödsling på avkastning och halt av lusern, rödkläver och vitkläver vid samodling med gräs. Medelvärdet för olika sorter och skördeintensiteter. Baljväxterna har rangordnats efter plantöhöjd

Table 1. The effect of nitrogen application on yield and proportion of lucerne, red clover and white clover grown in mixed swards. Mean values for different cultivars and cutting frequencies. The legumes have been ranked according to plant height

<table>
<thead>
<tr>
<th>Plats Country</th>
<th>Baljväxt Legume</th>
<th>N-göds-ling, kg/ha</th>
<th>N application</th>
<th>Baljväxt- avkastning, kg/ha t.s.</th>
<th>Legume DM yield</th>
<th>Legume halt, %</th>
<th>Legume proportion</th>
<th>Referens Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sverige</td>
<td>Lusern</td>
<td>0</td>
<td>8 668</td>
<td>82</td>
<td>Frankow-Lindberg, 1985</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>7 872</td>
<td>70</td>
<td>(3 vallår)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>7 655</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norge</td>
<td>Lusern</td>
<td>0</td>
<td>2 155</td>
<td>55</td>
<td>Vestad, 1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>46,5</td>
<td>1 961</td>
<td>44</td>
<td>(3 vallår)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>93</td>
<td>1 544</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sverige</td>
<td>Rödkläver</td>
<td>0</td>
<td>2 150</td>
<td>54</td>
<td>Kornher, 1977</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>1 525</td>
<td>33</td>
<td>(2 vallår)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>180</td>
<td>1 313</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norge</td>
<td>Rödkläver</td>
<td>0</td>
<td>1 082</td>
<td>24</td>
<td>Vestad, 1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>46,5</td>
<td>879</td>
<td>17</td>
<td>(3 vallår)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>93</td>
<td>636</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>Rödkläver</td>
<td>0</td>
<td>3 719</td>
<td>56</td>
<td>Raininko, 1968</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>2 830</td>
<td>34</td>
<td>(2 vallår)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>2 270</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schweiz</td>
<td>Rödkläver</td>
<td>0</td>
<td>5 000</td>
<td>52</td>
<td>Jorggi & Charles, 1980</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150-200</td>
<td>3 850</td>
<td>35</td>
<td>(2 vallår)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storbritannien</td>
<td>Vitkläver</td>
<td>0</td>
<td>2 742</td>
<td>40</td>
<td>Cowling, 1961</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>2 303</td>
<td>32</td>
<td>(3 vallår)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>118</td>
<td>1 303</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>236</td>
<td>427</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plats Country</td>
<td>Baljväxt Legume</td>
<td>N-gödsling, kg/ha</td>
<td>Baljväxt-avkastning, kg/ha t.s. Legume DM yield</td>
<td>Baljväxt-halt, % Legume proportion</td>
<td>Referens Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---</td>
<td>-----------------------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storbritannien (Nordirland)</td>
<td>Vitklöver</td>
<td>0</td>
<td>3 640</td>
<td>47</td>
<td>Laidlaw, 1980 (3 vallår)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>3 440</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>2 880</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>2 650</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storbritannien (Skottland)</td>
<td>Vitklöver</td>
<td>0</td>
<td>3 155</td>
<td>43</td>
<td>Frame, 1973 (2 vallår)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>161</td>
<td>935</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>323</td>
<td>585</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storbritannien (Wales)</td>
<td>Vitklöver</td>
<td>0</td>
<td>1 340</td>
<td>31</td>
<td>Wilman & Asiegbu, 1982a (1 vallår)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>224</td>
<td>580</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankrike</td>
<td>Vitklöver</td>
<td>0</td>
<td>1 392</td>
<td>22</td>
<td>Montard m.t.t., 1983 (3 vallår)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>464</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>160</td>
<td>132</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>320</td>
<td>28</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tyngdpunkten har därvid legat på effekter av kväve (N), fosfor (P) och kalium (K), och av dessa så har kvävetillgången visat sig ha de mest uttalade effekterna. Även andra grundämnen t.ex. svavel (Walker & Adams, 1958) och koppar (O'Toole & Masterson, 1970) har visat sig påverka balansen mellan baljväxter och gräs i blandbestånd.

Kväve intar en nyckelroll i våra odlade växters näringsförsörjning och anses vara den faktor som starkast begränsar växternas produktion på land (Ägren, 1985). Baljväxter, och några släkten till, utgör undantag från denna regel då de genom symbios med bl.a. arter av släktet Rhizobium kan uppnå en fullgod kväveförsörjning från luftens kväveförråd. Närvaro av mineraliskt kväve hämmar och begränsar kvävefixeringen (Silbury, Catchpoole & Wallace, 1986), och baljväxten utnyttjar i stället det mineraliska kvävet. I ett kvävegödslat blandbestånd kommer det därför att råda en viss konkurrens om det mineraliska kvävet. Trots allt leder kvävegödsling av blandbestånd till skördeökningar, då gräskomponenten vanligtvis för en tyande tillvaro i med kväve helt ogödslande bestånd. Skördeökningarnas storlek beror av baljväxtart och baljväxtbeståndets vigör. Här anges några i svenska försök erhållna värden som jämförelsematerial. I väletablerade förstaårsvallar med rödkläver erhålls en skördeökning om 5-10 kg t.s. per kg tillfört N vid givor upp till 100 kg per ha (Kornher, 1982). I äldre vallar kan skördeökningen uppgå till det dubbla (Frankow-Lindberg, 1988). I lusern vallar är skördeökningarna störst i första årets vall, och varierar där mellan 5 och 14 kg t.s. per kg tillfört N vid givor upp till 100 kg per ha (Frankow-Lindberg, 1985), beroende bl.a. på anläggningsmetod. I äldre vallar sjunker responsen och ligger på 4-7 kg t.s. per kg tillfört N. För vitklävergräsvallar är försöks materialet hittills begränsat, men preliminära beräkning visar att även för denna art är responsen störst i första årets vall och kan uppgå till ca 15 kg t.s. per kg tillfört N vid givor upp till 100 kg N per ha (Frankow-Lindberg, opublicerat). I äldre vallar är responsen lägre men överstiger vanligen den man kan få i väletablerade lusern vallar.

BEVATTNING

Bevattning som utförs vid markvattenunderskott ökar normalt avkastningen från blandvallar odlade på olika jordar. Röd- och vitkläver liksom lusern svarar alla tre bra på bevattning (Frankow-Lindberg, 1982b), trots att arterna karaktäriseras av olika djupt rotsystem (Osvald, 1959). Bevattningens effekter på den botaniska sammansättningen är emellertid en mer komplicerad frågeställning eftersom samspelseffekter med andra skötselåtgärder liksom med aktuell gräsart (dennas relativa svar på bevattningen) kan förvändas (tabell 2). Så har man t.ex. funnit att rödkläverandelen ökar (Raininko, 1968; Ekeberg, 1984 (fyra skördar per år)), eller minskar något (Frankow-Lindberg, 1982b; Ekeberg, 1984 (två skördar per år)), som en följd av bevattning av blandbestånd.
<table>
<thead>
<tr>
<th>Plats Country</th>
<th>Baljväxt Legume</th>
<th>Bevattning Irrigation</th>
<th>Baljväxt-avkastning kg/ha t.s. Legume DM yield</th>
<th>Baljväxt-halt, % Legume proportion</th>
<th>Gräsart Grass species</th>
<th>Referens Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>Rödkläver</td>
<td>-</td>
<td>2 625</td>
<td>41</td>
<td>Timotej</td>
<td>Raininko, 1968 (2 vallår)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+</td>
<td>3 970</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>Rödkläver</td>
<td>-</td>
<td>2 492</td>
<td>35</td>
<td>Ångssvingel</td>
<td>Raininko, 1968 (2 vallår)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+</td>
<td>3 718</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>Rödkläver</td>
<td>-</td>
<td>2 149</td>
<td>31</td>
<td>Hundäxing</td>
<td>Raininko, 1968 (2 vallår)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+</td>
<td>3 167</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sverige</td>
<td>Rödkläver</td>
<td>-</td>
<td>3 643</td>
<td>43</td>
<td>Timotej + ångssvingel</td>
<td>Frankow-Lindberg, 1982a, (3 vallår)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+</td>
<td>4 679</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sverige</td>
<td>Vitkläver</td>
<td>-</td>
<td>681</td>
<td>9</td>
<td>Timotej + ångssvingel</td>
<td>Frankow-Lindberg, 1982a, (3 vallår)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+</td>
<td>3 279</td>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Trots att lusen är torktolerant, så har dess andel i bevattnade blandbestånd ökat jämfört med bestånd som endast erhållit naturlig nederbörd (Levine, Kennedy & Gray, 1955; Lorenz m.fl., 1961).

AVHUGGNING

Effekterna av avhugnning på den botaniska sammansättningen i blandbestånd kan uppdelas i effekter som beror av skördeintensitet (frekvens och stubbhöjd) samt av avhuggningsätt (maskinell eller betning).

Ökande skördefrekvens (ökant antal skördar) av blandbestånd med rödkläver eller lusen leder vanligtvis till en sänkt avkastning (tabell 3).

Effekterna på beståndets botaniska sammansättning har visat sig vara måttlig i blandvallar med rödkläver (Ebberssten, 1974; Ellis Davies, Davies & Harvard, 1960; Raininko 1968), där endast små skillnader noterats. Tidpunkten för sista skörd kan ha ett större inflytande på rödkläverandelen i beståndet påföljande vår än skördefrekvensen i sig (Lustig, 1965; Frankow-Lindberg, 1985b).

När det gäller blandbestånd med vitkläver så förefaller effekter av ökad skördeintensitet på vallens avkastning
att vara mer komplicerade att tolka. Sålunda har både avkastningsökningar (Rhodes & Harris, 1978), avkastnings-
sänkningar (Wilman & Asiegbu, 1982) och inga förändringar av avkastningen alls (Wolton, Brockman & Shaw, 1970;
Frame, 1973) som en följd av ökad skördefrekvens rapport-
nerats. Även reaktioner i vallens botaniska sammansättning
har varierat, och rapporter om att vitklöverandelen i
beståndet inte har påverkats av skördefrekvensen finns
(Frame, 1973; Wilman & Asiegbu, 1982). Likväl förefaller
det som om vitklöverandelen ofta stiger med ökad skörde-
frekvens (Wagner, 1952; Harris & Thomas, 1973; Rhodes
& Harris, 1978; Kosaka, Murayama & Aiba, 1982; Kosaka,
Murayama & Fukushima, 1984; Nösberger, Schwank & Blum,
1984). De olika reaktionerna beror sannolikt på att det
finns ett samband mellan skördefrekvens och sort med
avseende på vitklöverns tillväxt och avkastning, eftersom
denna art kan uppvisa stora variationer i fenotypisk
plasticitet (Hill, 1977).

Man har visat att hög stubbhöjd kan gynna rödkläver i
blandbestånd med denna art (Lustig, 1965), i synnerhet
när återväxtskörd företagits vid en för rödkläver ognnsam
tidpunkt (vilket under svenska förhållanden vanligtvis
innebär september). Andra har dock inte kunnat påvisa
denna positiva effekt av hög stubbhöjd på rödkläver
gäller lusern så verkar stubbhöjden att vara av liten
betydelse för lusernandelen i en våletablerad vall (Smith,
1962). Vitkläver å andra sidan har ofta gynnats av avhugg-
ning med låg stubbhöjd (Robinson & Sprague, 1947; Hunt

Vanligtvis så varierar den botaniska sammansättningen
i blandbestånd mellan olika skördetillfällen inom ett
och samma år. Lägst baljväxtandel förekommer ofta vid
det första skördetillfället för året, och andelen ökar
(och när eventuellt en topp) senare under säsongen. Detta
har visats gälla såväl röd- och vitkläver som lusern
(Harkess, Hunt & Frame, 1970; Ebbersten, 1974; Jönsson,
1982; Nösberger, Schwank & Blum, 1984; Frankow-Lindberg,
1985b och 1985c).

Skörd i form av avbetning påverkar den botaniska samman-
sättningen i blandvallar annorlunda än maskinell skörd.
Avbetning innebär, förutom själva borttagandet av grömmas-
san, tramp, ev. selektivitet och tillförsel av spilling.
Andelen rödkläver påverkades negativt i bestånd där åter-
växten betades jämfört med bestånd som huggits av maski-
nell (Frankow-Lindberg, 1985b). Denna effekt kan ha
berott på en ökande förekomst av roströta i betade bestånd,
där trampskador på rothalsen kan ha varit inkörsporten
Tabell 3. Effekter av avhuggningsintervall på avkastning och halt av röd- och vitklöver samt lusern vid samodling med gräs. Medelvärden för olika sorters, kvävenivåer och gräsarter

Table 3. The effect of cutting frequency on yield and proportion of red and white clover and lucerne grown in mixed swards. Mean values for different cultivars, N rates and grass species

<table>
<thead>
<tr>
<th>Plats Country</th>
<th>Baljväxt Legume</th>
<th>Number of defoliations/year or interval in weeks</th>
<th>Baljväxt-avkastning, kg/ha t.s.</th>
<th>Baljväxt-halt, %</th>
<th>Legume proportion</th>
<th>Referens Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sverige</td>
<td>Rödklöver</td>
<td>2</td>
<td>3 063</td>
<td>42</td>
<td></td>
<td>Ebbersten, 1974 (3 vallår)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2 442</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>2 109</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>Rödklöver</td>
<td>2</td>
<td>3 044</td>
<td>32</td>
<td></td>
<td>Raininko, 1968 (2 vallår)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3 233</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>2 880</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>Lusern</td>
<td>3</td>
<td>10 057</td>
<td>82</td>
<td></td>
<td>Wolf & Smith, 1964 (2 vallår)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>3 755</td>
<td>48</td>
<td></td>
<td>Frame, 1973 (2 vallår)</td>
</tr>
<tr>
<td>Storbritannien (Skottland)</td>
<td>Vitklöver</td>
<td>6 v</td>
<td>1 645</td>
<td>19</td>
<td></td>
<td>Wilman & Asiegbu, 1982 (1 vallår)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 v</td>
<td>1 423</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 v</td>
<td>1 582</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storbritannien (Wales)</td>
<td>Vitklöver</td>
<td>8-12 v</td>
<td>1 470</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 v</td>
<td>1 090</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 v</td>
<td>650</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 v</td>
<td>640</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storbritannien</td>
<td>Vitklöver</td>
<td>4-6 v</td>
<td>2 190</td>
<td>22</td>
<td></td>
<td>Rhodes & Harris, 1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-3 v</td>
<td>2 550</td>
<td>34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FÖRÄNDRINGAR MED TIDEN

I föregående avsnitt har betydelsen av olika odlingstekniska åtgärder på blandvallars botaniska sammansättning blivit belyst, och det bör ha framgått att man inom vissa gränser kan utforma skötselstrategier som gynnar den baljväxt man är intresserad av att odla. Men också andra faktorer, som klimatpåfrestningar, sjukdomar och skadedjur, utövar ett starkt inflytande på bestånden vilka överlagrar de faktorer som kan kontrolleras. I själva verket så har många av de forskare vilka arbetat med blandbestånd påpekat att den botaniska sammansättningen i sådana bestånd är oerhört variabel.

Lusern är också känslig för sjukdomar och skadedjur såsom stjälknamatoder och vissnesjuka. Svenska sorters med god resistens mot dessa finns dock (Jönsson & Nilsdotter, 1987). Lämpligt odlingsområde av denna art är dock mer begränsat jämfört med rödkläver p.g.a. dess mycket uttala-

en till synes vitkläverrik vall över vintern kan förvandlas till en vitkläverfattig vall nästa vår.

SAMMANFATTNING

Av den redovisade litteraturen torde ha framgått att våra vallbaljväxter sinsemellan har delvis olika växtsätt och att de därmed inte reagerar på samma sätt för olika odlingstekniska åtgärder. De kan därför aldrig betrakta som direkt utbytbara komponenter i en blandvall, utan var och en av dem kräver en väl utformad skötselstrategi för att till fullo komma till sin rätt. I det följande ges några kortfattade odlingsanvisningar för resp. art. Anvisningarna har utformats så att resp. baljväxtart maximit gynnas och vallens produktion ska således kunna baseras på i första hand en stark baljväxtkomponent. I vissa fall baseras råden på ännu opublicerat material, och i vissa fall saknas svenska data vilket markeras med frågetecken.

Rödkläver

Såtidpunkt: Våren t.o.m. juli (snävare intervall i norra Sverige).

Anläggningsmetod: a) I skyddsgröda (bättre ogräskontroll) sådd med reducerad utsädesmängd och N-giva;
 b) Utan skyddsgröda, kan putsas under sommaren vid vårsådd;
 Sådjup: <20 mm.

Utsädesmängd: 5-7 kg/ha diploida sorter och 10-14 kg/ha tetraploida sorter + 15 kg/ha gräs.

Gräskomponent: Timotej, timotej + ängssvingel i flerårig vall;
 eng. rajgräs i ettårig vall.

Sortval: Se "Rätt frö till vallen" för mest odlingsvärda sort.

Gödsling: Vidmakthåll lämpligt pH samt P- och K-klass;
 små kvävegivor, <50 kg/ha och år, höjer avkastningen utan att alltför negativt påverka klöverandelen.
Bevattning: Påverkar knappast klöverandelen, men höjer avkastningen vid stora markvattenunderskott.

Avhuggning: Medelslen och sen klöver ger bäst avkastning vid två skörder per år men antalet avhuggningar per år betyder lite för klövernns uthållighet;
undvik avbetning;
undvik skörd ca 6 veckor före odlingssäsongens slut.

Varaktighet: 2 vallår, klöverrötta kan dock ödelägga odlingen i för tid.

Förväntad avkastning: <9,0 ton torrsubstans per ha.
(blandbestånd)

Förväntad kvalitet: ~10,0 MJ och ~90 g smb. råprotein per
(blandbestånd) kg torrsubstans vid två skörder per år.

Vitkläver

Sättdpunkt: Våren (t.o.m. juli?).

Anläggningsmetod: a) Utan skyddsgröda, bör förmodligen putsas under sommaren vid vårsådd?

b) I skyddsgröda (bättre ogräskontroll) sådd med reducerad utsädesmängd och låg N-giva;
Sådjup: <12 mm?

Utsädesmängd: 5 kg/ha vitkläver + 15 kg/ha gräs?

Gräskomponent: Ängssvingel, ängssvingel + timotej, (hund-äxing?) i fleråriga vallar;
eng. rajgräs i ettårig vall;
lägg till ängsgröe i vallar som framför allt ska användas till bete.

Sortval: Se "Rätt frö till vallen" för mest odlingsvärda sort.

Gödsling: Vidmakthåll lämpligt pH samt P- och K-klass;
en liten kvävegiva på våren, <30 kg/ha, höjer avkastningen men kan hota ett svagt klöverbe-
stånd.
Bevattning: Gynnar klöverkomponenten, höjer avkastningen vid markvattenunderskott.

Avhuggning: Minst tre per år;
tidig förstaskörd (tidigt ensilage-stadium) nödvändig;
avbetning går bra;
obekant huruvida vitklöver har någon känslig tidpunkt under hösten.

Varaktighet: >4 vallår vid rätt skötsel;
vinterskador kan förekomma men kan ofta repa-

reras.

Förväntad avkastning: <8 ton torrsubstans per ha.
(blandbestånd)

Förväntad kvalitet: ~11,0 MJ och ~175 g smb. råprotein
(blandbestånd) per kg torrsubstans.

Lusern

Sätidpunkt: Våren.

Anläggningsmetod: a) Utan skyddsgröda, putsning med hög stubb kan göras i slutet av augusti;

 b) I skyddsgröda sådd med starkt redu-
 cerad utsädesmängd och N-giva;
 Ympas med Rhizobium;
 Sådjup: <20 mm.

Utsädesmängd: 15 kg/ha + gräs.

Gräskomponent: a) ängssvingel (10 kg/ha)

 b) hundäxing (5 kg/ha)

Sortval: Se "Rätt frö till vallen" för mest odlingsvärda

 sort.

Gödsling: Vidmakthåll lämpligt pH samt P- och K-klass;
marginellt utbyte av kväve, men kan användas
för att gynna gräskomponenten i en mycket stark
lusernvall.

Bevattning: Påverkar knappast lusernhalten, men höjer
avkastningen vid stora markvattenunderskott.
Avhuggning: Tre per år (ev. två per år i första årets vall) låt förstaskörden börja blomma i första årets vall; undvik avbetning; undvik skörd ca 6 veckor före odlingssäsongens slut.

Varaktighet: <4 vallår vid rätt skötsel och om odlingss- platsen har en djup och väldränerad jord, vinterskadorna kan annars bli omfattande.

Förväntad avkastning: <12 ton torrsubstans per ha.
(blandbestånd)

Förväntad kvalitet: <9,5 MJ och ~150 g smb. råprotein (blandbestånd) per kg torrsubstans.

SUMMARY

This limited review has illustrated differences between the forage legumes lucerne, red clover and white clover in their growth and responses to cultural practices. Each of them therefore needs a well planned management strategy to present their respective peak performance. Brief management guidelines for each species have been outlined and are presented below. The recommended practices are aimed to encourage a vigorous growth of the respective legume in order to maintain a good production level without large inputs of N fertilizers. Some of the guidelines are based on material still unpublished and for some of them there is a lack of Swedish data, which has been pointed out by questionmarks.

Red clover

Time of sowing: Spring until July (shorter interval in the north of Sweden).

Method of sowing: a) Undersowing (better weed control) in an arable crop sown with reduced seed and N fertilization rates;

b) Direct sowing, can be trimmed to control weeds when sown in spring;
Sowing depth: <20 mm.

Seed rates: 5-7 kg/ha of diploid varieties and 10-14 kg/ha of tetraploid varieties + 15 kg/ha grass seeds.
Grass companion species: Timothy or timothy + meadow fescue in longterm leys; perennial ryegrass in shortterm (1 year) leys.

Variety: See "Rätt frö till vallen" for choice of most productive variety.

Fertilization: Maintain adequate soil pH and P and K status; small dressings of N, <50 kg/ha/year boost yields without reducing effects on clover production.

Irrigation: Does not affect clover proportion but boosts yields at large water deficits.

Defoliation: Medium late and late varieties perform best when cut twice a year but number of defoliations affect clover persistence only slightly; avoid grazing; avoid defoliation ~6 weeks before anticipated frosts.

Persistence: 2 years, clover rot may, however, spoil the sward previously.

Target yield: <9 tonnes DM/ha (mixed sward).

Target quality: ~10.0 MJ and ~90 g DCP when cut twice a year (mixed sward).

White clover

Time of sowing: Spring (until July?).

Method of sowing: a) Direct sowing, should be trimmed to control weeds when sown in spring?

b) Undersowing (better weed control) in an arable crop sown with reduced seed rates and N fertilization; Sowing depth: <12 mm?

Grass companion species: Meadow fescue, meadow fescue + timothy, (cooksfoot?) in longterm leys;
add smooth meadow grass for grazed swards;
perennial ryegrass in short term (<2 years) leys.

Seed rates: 5 kg/ha white clover + 15 kg/ha grass seeds?

Variety: See "Rätt frö till vallen" for choice of most productive variety.

Fertilization: Maintain adequate soil pH and P and K status;
a small dressing of N, <30 kg/ha, boosts yield but may threaten a week clover stand.

Irrigation: Increases clover proportion, boosts yield when water deficits occur.

Defoliation: A minimum of 3 per year;
early 1st cut (silage stage) essential;
tolerant to grazing;
periods in autumn susceptible to defoliation unknown.

Persistence: >4 years with correct management;
winter damages occur but may be restored.

Target yield: <8 tonnes DM/ha.

Target quality: ≈11.0 MJ and ≈175 DCP/kg DM.

Lucerne

Time of sowing: Spring.

Method of sowing: a) Direct sowing, the sward may be trimmed in the end of August leaving a high stubble height;
b) Undersowing (better weed control) in an arable crop sown with reduced seed and N fertilization rates;
inoculation with Rhizobium should be done every time;
Sowing depth: <20 mm.

Seed rates: 15 kg/ha + grass seeds.
Grass companion species: a) meadow fescue (10 kg/ha)
 b) coocksfoot (5 kg/ha)

Variety: See "Rätt frö till vallen" for choice of most productive variety.

Fertilization: Maintain adequate soil pH and P and K status;
 marginal effects of N fertilizer.

Irrigation: Does not affect lucerne proportion but boosts yields at large water deficits.

Defoliation: 3 per year (possibly twice in the 1st year crop) the 1st cut should be allowed to flower in the 1st year crop; avoid grazing; avoid defoliation ~6 weeks before anticipated frosts.

Persistence: <4 years provided that management is correct and soil is deep and well-drained, winter damages may otherwise be large.

Target yield: <12 tonnes/ha (mixed sward).

Target quality: <9.5 MJ and ~150 g DCP/kg DM (mixed sward).

REFERENSER

Jackman, R.H. & Mouat, M.C.H. 1972b. Competition between grass and clover for phosphate II. Effect of root acti-

16. Erik Hallgren. 1990. Olika faktorers inflytande på effekten av behandling med bekämpningsmedel mot ogräs i våroljeväxter. 60 kr

In this series, which is a continuation of the series Reports, results of basic and applied research from the Department of Crop Production Science are published.

Redaktionskommitté Editorial Board

Ulf Wünsche (ordförande chairman)
Håkan Fogelfors
Lennart Kåhre